Introduction to Quantum Computing

Kitty Yeung, Ph.D. in Applied Physics

Creative Technologist + Sr. PM Microsoft

www.artbyphysicistkittyyeung.com @KittyArtPhysics @artbyphysicistkittyyeung

August 16, 2020 Hackaday, session 18 Other communities, session 10

Class structure

- <u>Comics on Hackaday Quantum Computing</u> <u>through Comics</u> every Sun
- 30 mins 1 hour every Sun, one concept (theory, hardware, programming), Q&A
- Contribute to Q# documentation <u>http://docs.microsoft.com/quantum</u>
- Coding through Quantum Katas
 <u>https://github.com/Microsoft/QuantumKatas/</u>
- Discuss in Hackaday project comments throughout the week
- Take notes

RSA Numbers

- <u>https://en.wikipedia.org/wiki/RSA_numbers</u>
- RSA-100 has 100 decimal digits (330 bits). Its factorization was announced on April 1, 1991 by Arjen K. Lenstra. Reportedly, the factorization took a few days using the multiple-polynomial quadratic sieve algorithm on a MasPar parallel computer.
- RSA-100 = N = 152260502792253336053561837813263742971806811496138068865790849458012296325895 2897654000350692006139
- RSA-100 = p x q=

37975227936943673922808872755445627854565536638199

× 40094690950920881030683735292761468389214899724061

• Number of qubits needed ~ 659 + 329 = 988 (not considering error-correction qubits)

Let's use a (much) smaller number

- N = 35 = p * q
- Number of qubits needed = 11, so that

 $2^{11} = 2048 > N^2 = 35^2 = 1225$

x	3 ^x Mod 35
<mark>0</mark>	1
1	3
2	9
3	27
4	11
5	33
6	29
7	17
8	16
9	13
10	4
11	12
<mark>12</mark>	1
13	3
14	9
15	27
16	11
17	33
18	29
19	17
20	16
21	13
22	4
23	12
<mark>24</mark>	1
25	3
26	9
2047	17

Let's use a (much) smaller number

Number of qubits needed = 11, so that

 $2^{11} = 2048 > N^2 = 35^2 = 1225$

Periodicity r = 12

 $a^0 M \text{od } N = 3^0 M \text{od } 35 = a^r M \text{od } N = 3^{12} M \text{od } 35 = 1$

 a^r -1 should be divisible by N

x	3 ^x Mod 35
0	1
1	3
2	9
3	27
4	11
5	33
6	29
7	17
8	16
9	13
10	4
11	12
<mark>12</mark>	<mark>1</mark>
13	3
14	9
15	27
16	11
17	33
18	29
19	17
20	16
21	13
22	4
23	12
<mark>24</mark>	1
25	3
26	9
2047	17

Pure math

- Rearrange: $(a^{r/2})^2$ -1 should be divisible by N
- $(a^{r/2}-1)(a^{r/2}+1)$ should be divisible by N
- r needs to be even, (a^{r/2}+1) and (a^{r/2}-1) are not individually divisible by N
- p divides $(a^{r/2}-1) = 728$, q divides $(a^{r/2}+1) = 730$
- p = GCD(N, $(a^{r/2}-1))$ = GCD(35,728) = 7
- q = GCD(N, $(a^{r/2}+1))$ = GCD(35,730) = 5

A different proof: How Quantum Computers Break Encryption | Shor's Algorithm Explained <u>https://www.youtube.com/watch?v=lvTqbM5Dq4Q</u>

Euclidean algorithm

- p = GCD(N, $(a^{r/2}-1))$ = GCD(35,728) = 7
- q = GCD(N, $(a^{r/2}+1))$ = GCD(35,730) = 5
- 728-35 = 693 divisible by 7
- 693-35 = 658 divisible by 7
- ...
- 63-35 = 28 divisible by 7

Quantum part

• Hard step is finding r for large N

x	3 ^x Mod 35
<mark>0</mark>	<mark>1</mark>
1	3
2	9
3	27
4	11
5	33
6	29
7	17
8	16
9	13
10	4
11	12
<mark>12</mark>	1
13	3
14	9
15	27
16	11
17	33
18	29
19	17
20	16
21	13
22	4
23	12
<mark>24</mark>	<mark>1</mark>
25	3
26	9
2047	17

x	3 ^x Mod 35
<mark>0</mark>	<mark>1</mark>
1	3
2	9
3	27
4	11
5	33
6	29
7	17
8	16
9	13
10	4
11	12
<mark>12</mark>	<mark>1</mark>
13	3
14	9
15	27
16	11
17	33
18	29
19	17
20	16
21	13
22	4
23	12
<mark>24</mark>	<mark>1</mark>
25	3
26	9
2047	17

 $|0\rangle|a^0 \, Mod \, N\rangle + |1\rangle|a^1 \, Mod \, N\rangle + |2\rangle|a^2 \, Mod \, N\rangle \dots \, |Q-1\rangle|a^{Q-1} \, Mod \, N\rangle$

x	3 ^x Mod 35
<mark>0</mark>	<mark>1</mark>
1	3
2	9
3	27
4	11
5	33
6	29
7	17
8	16
9	13
10	4
11	12
<mark>12</mark>	1
13	3
14	9
15	27
16	11
17	33
18	29
19	17
20	16
21	13
22	4
23	12
<mark>24</mark>	1
25	3
26	9
2047	17

x	3*Mod 35
0	1
1	3
2	9
3	27
4	11
5	33
6	29
7	17
8	16
9	13
10	4
11	12
<mark>12</mark>	1
13	3
14	9
15	27
16	11
17	33
18	29
19	17
20	16
21	13
22	4
23	12
<mark>24</mark>	1
25	3
26	9
	•
2047	17

 $|0\rangle|a^0 \, Mod \, N\rangle + |1\rangle|a^1 \, Mod \, N\rangle + |2\rangle|a^2 \, Mod \, N\rangle \dots \, |Q-1\rangle|a^{Q-1} \, Mod \, N\rangle$

 Quantum Computation and Quantum Information - 10th Anniversary Edition, Nielsen and Chuang
 <u>https://github.com/Michaelvll/myQShor</u>
 CS251 Quantum Information Science, 2018
 @ ACM Honors Class, SJTU

<i>x</i>	3 ^x Mod 35
<mark>0</mark>	<mark>1</mark>
1	3
2	9
3	27
4	11
5	33
6	29
7	17
8	16
9	13
10	4
11	12
<mark>12</mark>	<mark>1</mark>
13	3
14	9
15	27
16	11
17	33
18	29
19	17
20	16
21	13
22	4
23	12
<mark>24</mark>	1
25	3
26	9
2047	17

1	
x	3 ^x Mod 35
0	1
1	3
2	9
3	27
4	11
5	33
6	29
7	17
8	16
9	13
10	4
11	12
<mark>12</mark>	<mark>1</mark>
13	3
14	9
15	27
16	11
17	33
18	29
19	17
20	16
21	13
22	4
23	12
<mark>24</mark>	1
25	3
26	9
2047	17

The oracle in Shor's algorithm arranges all the data into a format that can utilize the QFT.

Box 5.1: Three qubit quantum Fourier transform

For concreteness it may help to look at the explicit circuit for the three qubit quantum Fourier transform:

Recall that S and T are the phase and $\pi/8$ gates (see page xxiii). As a matrix the quantum Fourier transform in this instance may be written out explicitly, using $\omega = e^{2\pi i/8} = \sqrt{i}$, as

Quantum Computation and Quantum Information - 10th Anniversary Edition, Nielsen and Chuang

all the data into a format that can utilize the QFT. Quantum Computation and Quantum Information - 10th Anniversary Edition, Nielsen and Chuang

Q# sample

- <u>microsoft/Quantum</u>: Samples and tools to help get started with the Quantum Development Kit.
- Samples>algorithms>integer-factorization
- Numerics Library: Microsoft.Quantum.Arithmetic;
- QFT: Microsoft.Quantum.Canon

Questions

- Post in chat or on Hackaday project <u>https://hackaday.io/project/168554-quantum-computing-through-comics</u>
- FAQ: Past Recordings on Hackaday project or my YouTube <u>https://www.youtube.com/c/DrKittyYeung</u>
- Next Sunday: quantum career Q&A session

