Introduction to Quantum Computing

Kitty Yeung, Ph.D. in Applied Physics

Creative Technologist + Sr. PM
Microsoft
www.artbyphysicistkittyyeung.com
@KittyArtPhysics
@artbyphysicistkittyyeung

August 16, 2020
Hackaday, session 18
Other communities, session 10

Class structure

- Comics on Hackaday - Quantum Computing through Comics every Sun
- 30 mins - 1 hour every Sun, one concept (theory, hardware, programming), Q\&A
- Contribute to Q\# documentation http://docs.microsoft.com/quantum
- Coding through Quantum Katas https://github.com/Microsoft/QuantumKatas/
- Discuss in Hackaday project comments throughout the week
- Take notes

RSA Numbers

- https://en.wikipedia.org/wiki/RSA numbers
- RSA-100 has 100 decimal digits (330 bits). Its factorization was announced on April 1, 1991 by Arjen K. Lenstra. Reportedly, the factorization took a few days using the multiple-polynomial quadratic sieve algorithm on a MasPar parallel computer.
- RSA-100 = N =

152260502792253336053561837813263742971806811496138068865790849458012296325895 2897654000350692006139

- RSA-100 = p x q =

37975227936943673922808872755445627854565536638199
$\times 40094690950920881030683735292761468389214899724061$

- Number of qubits needed $\sim 659+329=988$
(not considering error-correction qubits)

Let's use a (much) smaller number

- $N=35=p^{*} q$
- Number of qubits needed $=11$, so that
$2^{11}=2048>N^{2}=35^{2}=1225$

x	$3^{x} \operatorname{Mod} 35$
0	1
1	3
2	9
3	27
4	11
5	33
6	29
7	17
8	16
9	13
10	4
11	12
12	1
13	3
14	9
15	27
16	11
17	33
18	29
19	17
20	16
21	13
22	4
23	12
24	1
25	3
26	9
.	.
.	.
.	.
2047	17

Let's use a (much) smaller number

- $N=35=p^{*} q$
- Number of qubits needed $=11$, so that $2^{11}=2048>N^{2}=35^{2}=1225$

Periodicity $r=12$

$a^{0} \operatorname{Mod} N=3^{0} \operatorname{Mod} 35=a^{r} \operatorname{Mod} N=3^{12} \operatorname{Mod} 35=1$
$a^{r}-1$ should be divisible by N

x	$3^{x} \operatorname{Mod} 35$
0	1
1	3
2	9
3	27
4	11
5	33
6	29
7	17
8	16
9	13
10	4
11	12
12	1
13	3
14	9
15	27
16	11
17	33
18	29
19	17
20	16
21	13
22	4
23	12
24	1
25	3
26	9
.	.
.	.
.	.
2047	17

Pure math

- Rearrange: $\left(a^{r / 2}\right)^{2}-1$ should be divisible by N
- $\left(a^{r / 2}-1\right)\left(a^{r / 2}+1\right)$ should be divisible by N
- r needs to be even, $\left(a^{r / 2}+1\right)$ and ($a^{r / 2}-1$) are not individually divisible by N
- p divides $\left(a^{r / 2}-1\right)=728$, q divides $\left(a^{r / 2}+1\right)=730$
- $\mathrm{p}=\operatorname{GCD}\left(\mathrm{N},\left(a^{r / 2}-1\right)\right)=\operatorname{GCD}(35,728)=7$
- $\mathrm{q}=\operatorname{GCD}\left(\mathrm{N},\left(a^{r / 2}+1\right)\right)=\operatorname{GCD}(35,730)=5$

Euclidean algorithm

- $\mathrm{p}=\operatorname{GCD}\left(\mathrm{N},\left(a^{r / 2}-1\right)\right)=\operatorname{GCD}(35,728)=7$
- $\mathrm{q}=\operatorname{GCD}\left(\mathrm{N},\left(a^{r / 2}+1\right)\right)=\operatorname{GCD}(35,730)=5$
- $728-35=693$ divisible by 7
- $693-35=658$ divisible by 7
- $63-35=28$ divisible by 7

Quantum part

- Hard step is finding r for large N

x	$3^{x} \operatorname{Mod} 35$
0	1
1	3
2	9
3	27
4	11
5	33
6	29
7	17
8	16
9	13
10	4
11	12
12	1
13	3
14	9
15	27
16	11
17	33
18	29
19	17
20	16
21	13
22	4
23	12
24	1
25	3
26	9
.	.
.	.
.	.
2047	17

x	$3^{x} \operatorname{Mod} 35$
0	1
1	3
2	9
3	27
4	11
5	33
6	29
7	17
8	16
9	13
10	4
11	12
12	1
13	3
14	9
15	27
16	11
17	33
18	29
19	17
20	16
21	13
22	4
23	12
24	1
25	3
26	9
.	.
.	.
.	.
2047	17

x	$3^{x} \operatorname{Mod} 35$
0	1
1	3
2	9
3	27
4	11
5	33
6	29
7	17
8	16
9	13
10	4
11	12
12	1
13	3
14	9
15	27
16	11
17	33
18	29
19	17
20	16
21	13
22	4
23	12
24	1
25	3
26	9
.	.
.	.
.	.
2047	17

$|0\rangle\left|a^{0} \operatorname{Mod} N\right\rangle+|1\rangle\left|a^{1} \operatorname{Mod} N\right\rangle+|2\rangle\left|a^{2} \operatorname{Mod} N\right\rangle \ldots|Q-1\rangle\left|a^{Q-1} \operatorname{Mod} N\right\rangle$

1. Quantum Computation and Quantum Information - 10th Anniversary Edition, Nielsen and Chuang 2. https://github.com/Michaelvll/myQShor CS251 Quantum Information Science, 2018

x	$3^{x} \operatorname{Mod} 35$
0	1
1	3
2	9
3	27
4	11
5	33
6	29
7	17
8	16
9	13
10	4
11	12
12	1
13	3
14	9
15	27
16	11
17	33
18	29
19	17
20	16
21	13
22	4
23	12
24	1
25	3
26	9
.	.
.	.
.	.
2047	17

@ ACM Honors Class, SJTU

x	$3^{x} \operatorname{Mod} 35$
0	1
1	3
2	9
3	27
4	11
5	33
6	29
7	17
8	16
9	13
10	4
11	12
12	1
13	3
14	9
15	27
16	11
17	33
18	29
19	17
20	16
21	13
22	4
23	12
24	1
25	3
26	9
.	.
.	.
.	.
2047	17

x	$3^{x} \operatorname{Mod} 35$
0	1
1	3
2	9
3	27
4	11
5	33
6	29
7	17
8	16
9	13
10	4
11	12
12	1
13	3
14	9
15	27
16	11
17	33
18	29
19	17
20	16
21	13
22	4
23	12
24	1
25	3
26	9
.	.
.	.
.	.
2047	17

Box 5.1: Three qubit quantum Fourier transform
For concreteness it may help to look at the explicit circuit for the three qubit quantum Fourier transform:

Recall that S and T are the phase and $\pi / 8$ gates (see page xxiii). As a matrix the quantum Fourier transform in this instance may be written out explicitly, using $\omega=e^{2 \pi i / 8}=\sqrt{i}$, as

$$
\frac{1}{\sqrt{8}}\left[\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & \omega & \omega^{2} & \omega^{3} & \omega^{4} & \omega^{5} & \omega^{6} & \omega^{7} \\
1 & \omega^{2} & \omega^{4} & \omega^{6} & 1 & \omega^{2} & \omega^{4} & \omega^{6} \\
1 & \omega^{3} & \omega^{6} & \omega^{1} & \omega^{4} & \omega^{7} & \omega^{2} & \omega^{5} \\
1 & \omega^{4} & 1 & \omega^{4} & 1 & \omega^{4} & 1 & \omega^{4} \\
1 & \omega^{5} & \omega^{2} & \omega^{7} & \omega^{4} & \omega^{1} & \omega^{6} & \omega^{3} \\
1 & \omega^{6} & \omega^{4} & \omega^{2} & 1 & \omega^{6} & \omega^{4} & \omega^{2} \\
1 & \omega^{7} & \omega^{6} & \omega^{5} & \omega^{4} & \omega^{3} & \omega^{2} & \omega^{1}
\end{array}\right]
$$

Quantum Computation and Quantum Information - 10th Anniversary Edition, Nielsen and Chuang

Quantum Computation and Quantum Information - 10th Anniversary Edition, Nielsen and Chuang

The oracle in Shor's algorithm arranges
all the data into a format that can utilize
the QFT.

Q\# sample

- microsoft/Quantum: Samples and tools to help get started with the Quantum Development Kit.
- Samples>algorithms>integer-factorization
- Numerics Library: Microsoft.Quantum.Arithmetic;
- QFT: Microsoft.Quantum.Canon
- Post in chat or on Hackaday project
https://hackaday.io/project/168554-quantum-computing-through-comics

Questions

- FAQ: Past Recordings on Hackaday project or my YouTube https://www.youtube.com/c/DrKittyYeung
- Next Sunday: quantum career Q\&A session

